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In this paper we consider the possibility of generating homogeneous flows with a
nearly constant strain rate. This is achieved by stretching an almost cylindrical liquid
bridge under microgravity. One key issue is the adjustability of the disk diameters,
necessary for maintaining ideal boundary conditions. We first study the stretching of
two different fluids by both numerical and experimental means. The numerical results
are compared with the experimental data and very good agreement is found. The
numerical method is then used to study the behaviour of liquid bridges for quite a
large range of the flow parameters (capillary number Ca and Weber number We) in
order to detect those regimes with most suitable flow conditions.

1. Introduction
Linear flow fields are commonly used for rheological studies, e.g. to measure the

fluid viscosity or the deformation behaviour of the whole sample or components in
it. The fluid properties may vary considerably depending on the specific linear flow
type and the corresponding homogeneity of the flow field. In view of the experimental
demands of rheological tests, the ideal uniaxial extensional flow field is characterized
by a constant strain rate distribution, both in space and time.

The ideal uniaxial extensional flow field v with constant strain rate ε̇0 in space and
time has the form

vr = −0.5ε̇0r, vθ = 0, vz = ε̇0z, (1.1)

in a cylindrical coordinate system (r , θ , z). For an initially cylindrical fluid volume
with length L0 and radius R0 this specific form of v implies

L(t) = L0 exp(ε̇0t), (1.2)

R(t) = R0 exp(−0.5 ε̇0t), (1.3)

with L(t) the time-dependent length of the fluid volume and R(t) its radius. In
particular, the liquid bridge is cylindrical in shape at all times.

However, the experimental realization of such a flow field causes severe difficulties
in practice. Several attempts have been made in this direction. For instance Chin &
Han (1979) and Mighri, Ajji & Carreau (1997) used a conical section of a transparent
flow channel to investigate the deformation of emulsion droplets. Although this device
is capable of providing an extensional flow within the entrance length of the conical
channel, this extensional flow is predominantly non-constant and heterogeneous owing
to the developing velocity profile in the entrance region of the conical channel.
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Because of the difficulties in generating homogeneous shear-free uniaxial extensional
flows in convergent channels, plane extensional flows were principally generated when
performing droplet deformation experiments, see Stone (1994). A guidance to generate
ideal plane extensional flow within a four-roll mill is given by Higdon (1993).

However, plane extensional flows are not optimal for the investigation of embedded
axially symmetric emulsion droplets or particles owing to the breaking of the two-
dimensional character of the flow, see also Berg (2002). For a comparison of say,
droplet experiments with theoretical results, uniaxial extensional flows are more
adequate.

Even for stretched liquid bridges, care must be taken to achieve a flow field with
high quality, which depends on the actual inertia, capillary and viscous forces and
appropriate boundary conditions. For instance, Kröger et al. (1992) have shown
that the contour deformation of an initially cylindrical liquid bridge between two
unchanging endplates during stretching yields large variations of the local extension
rates in space and time caused by necking.

To circumvent this effect and to obtain a constant extension rate, at least in the
middle of the bridge, Tirtaatmadja & Sridhar (1993) proposed adjusting the disk
velocity profile; but, even this attempt leads to a flow field which remains far from
homogeneous.

In this paper, we discuss the possibility of generating nearly homogeneous flows
with an almost constant strain rate in a stretched fluid column by means of adjusting
the disk diameters so that ideal boundary conditions for producing a cylindrical fluid
bridge are maintained.

Even under microgravity conditions and with adjustment of the disk diameters,
the ideal extensional flow is not totally achievable; this is due to the dynamic
pressure gradient (induced by acceleration and capillary forces) deforming the bridge
contour (see Berg, Dreyer & Rath 1999). Instead, the real stretched liquid bridge is
asymmetrically deformed in the direction of the accelerated support owing to inertia
and surface tension forces and will eventually pinch off.

Our goal is to investigate this behaviour with respect to the flow parameters Ca

(capillary number) and We (Weber number), see § 2, and detect those regimes with
the most suitable flow conditions.

To this end, we first study the stretching of two different liquids by both numerical
and experimental means. The numerical results are compared with the experimental
data, resulting in very good agreement. The numerical method is then used to study
the behaviour of liquid bridges for a fairly large range of Ca and We values.

For the numerical simulation of the problem we use a finite-element method with
the following key ingredients: a variational formulation for the curvature of the free
boundary, yielding an accurate dimensionally-independent and simple-to-implement
approximation for the curvature; a stable time discretization, semi-implicit with
respect to the treatment of the curvature terms. This first allows us to choose the
time step independently of the mesh size in contrast to common ‘explicit’ treatments
of the curvature terms, and secondly decouples the computation of the geometry and
the flow field. This approach has proved to be both efficient and robust with respect
to the dimensionless parameters Ca, We, see Bänsch (2001) and also § 3.

In some related work, Meissner (1969) developed the extensional rheometer, also
known as the rheotens test, which was modified by Maia et al. (1999). Matta &
Tytus (1988) and Sridhar et al. (1991) pointed out the relevance of constant strain
rate distributions in the full sample and developed the pioneering filament stretching
device. Such stretching devices were in turn used by several research groups (e.g.
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Figure 1. Setting and basic notation. The device is dropped in the z-direction.

Tirtaatmadja & Sridhar 1993; Berg, Kröger & Rath 1994; Spiegelberg, Ables &
McKinley 1996; Yao, Spiegelberg & McKinley 2000; McKinley & Tripathi 2000;
McKinley & Sridhar 2002), to measure the extensional viscosity in macromolecular
fluids.

In addition to this experimental work, numerical simulations have been performed
(e.g. Gaudet, McKinley & Stone 1996; Yao, Spiegelberg & McKinley 2000; Yildirim &
Basaran 2001). The latter work studies the dependence of the limiting bridge length
and the location of the breakup point on the constant stretching speed (and therefore
non-constant strain rate). In Olagunju (1999), a linear stability analysis for a one-
dimensional model neglecting inertia and gravity forces is considered.

Note that in contrast to our work, all these articles consider stretched liquid bridges
with constant disk diameters. In the present work, we are capable of identifying
regimes with nearly constant strain rate distribution (in both space and time) owing
to the adjustability of the disk diameters.

We also remark that this study exclusively considers stretching of liquid bridges in
the first time period preceding the beginning of the breakup process. Details about
the special breakup process with its well-known self-similarity and scaling behaviour
can be found, for example, in the review paper of Eggers (1997).

The rest of the paper is organized as follows: in § 2, we present the mathematical
formulation of the problem. In § 3, a brief outline of the numerical method is given
and § 4 describes the experimental set-up and experimental conditions. In § 5, we
first compare the experiments with corresponding simulations and then discuss a
numerical parameter study for the dimensionless parameters Ca and We. Our results
are summarized in § 6.

2. Problem formulation
2.1. Mathematical formulation

Denote by Ω = Ω(t) the region occupied by the liquid; Ω is dependent on the
position of the membranes Γs, Γm (the solid and moving endplates, respectively)
and on the a priori unknown free surface Γf (see figure 1). We consider an iso-
thermal incompressible and Newtonian fluid with constant density ρ and dynamical
viscosity µ. Therefore the system can be described by the incompressible Navier–
Stokes equations: find a vector-valued velocity field v = v(t, x) and a pressure field
p = p(t, x) such that

ρ(∂tv + v · ∇v) − ∇ · σ = ρg in Ω, (2.1a)

∇ · v = 0 in Ω. (2.1b)
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Here, g = g ez denotes the vector of gravity and σ = σ (µ v, p) denotes the stress
tensor, defined by

σ = 2µ D(v) − pI = µ(∇v + ∇vT ) − pI.

Note that in order to avoid confusion, vector- as well as matrix-valued functions
will be denoted by bold characters, whereas plain characters indicate scalars.

On the free surface Γf we have a balance of forces

σ · n = −γ

(
1

R1

+
1

R2

)
n + σ gas · n,

with γ the coefficient of surface tension, 1/R1, 1/R2 the principle curvatures of Γf , n
the (outward pointing) normal vector to Γf and σ gas the stress tensor of the ambient
gas phase. Since the dynamic part of the latter is negligible, we obtain

σ · n = −γ

(
1

R1

+
1

R2

)
n − pgasn, (2.2)

with pgas being the constant ambient pressure. Finally, the kinematic condition

v · n = Vf ,

holds, where Vf is the normal velocity of the free surface Γf .
On the remaining parts Γs, Γm of the boundary, no-slip conditions for v hold.

2.2. Non-dimensional axisymmetric equations

The following non-dimensionalization is applied:

x̂ =
1

R0

x, t̂ = ε̇0t, v̂ =
1

ε̇0R0

v, p̂ =
R0

γ
(p − pgas).

Introducing the Weber number We, the capillary number Ca, the Bond number Bo,
and for convenience the Reynolds number Re,

We =
ρR3

0 ε̇
2
0

γ
, Ca =

µR0ε̇0

γ
, Bo =

ρ R2
0g

γ
, Re =

We

Ca
,

equation (2.1) becomes

We(∂t̂ v̂ + v̂ · ∇̂v̂) − Ca�̂v̂ + ∇̂p̂ = Bo ez in Ω̂, (2.3a)

∇̂ · v̂ = 0 in Ω̂, (2.3b)

On the free surface Γ̂f we have

−σ̂ (Ca v̂, p̂) · n = κ̂ n, (2.3c)

v̂ · n = V̂f , (2.3d )

where κ̂ is the sum of the principal curvatures of Γ̂f . In our case, Bo = 0 (cf. § 4.2),
thus the dimensionless system is characterized by the ratio of inertia and capillary
forces We, the ratio of viscous and capillary forces Ca, and the initial aspect ration
Λ0 = L0/R0. Since we only work in non-dimensional quantities, we henceforth drop
the ‘̂’ for the sake of brevity and relabel the scaled variables again by v, p, etc. unless
otherwise stated.
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Note that the fixed and moving boundaries are given in non-dimensional coordinates
by

Γs = {x | 0 � r � exp(−t/2), z = 0}, (2.4)

Γm = {x | 0 � r � exp(−t/2), z = Λ0 exp(t)}, (2.5)

and that in non-dimensional units the (desired) strain rate is 1.
Since all data are axisymmetric and the flow is laminar we may assume a two-

dimensional axisymmetric configuration, i.e.

v(t, x) = vr (t, r, z)er + vz(t, r, z)ez, p(t, x) = p(t, r, z).

In cylindrical coordinates, the non-dimensional problem now reads:

We(∂tvr + v · ∇vr ) + Ca
(

−�r,zvr +
vr

r2

)
+ ∂rp =0, (2.6a)

We(∂tvz + v · ∇vz) − Ca�r,zvz + ∂zp =0, (2.6b)

1

r
∂r (r vr ) + ∂zvz =0, (2.6c)

where �r,z v = (1/r) ∂r (r∂rv) + ∂2
z v is the Laplacian in cylindrical coordinates. On the

free surface Γf , we have

−Ca

[
2∂rvr ∂rvz + ∂zvr

∂rvz + ∂zvr 2∂zvz

] [
nr

nz

]
+ p n = κ n. (2.6d )

The kinematic condition reads

vrnr + vznz = Vf . (2.6e)

The non-slip conditions can be expressed as

vz = Λ0 exp(t), vr = − 1
2
r on Γm, (2.6f )

vz = 0, vr = − 1
2
r on Γs. (2.6g)

To close the system, initial conditions for v and for the initial fluid bridge Ω(0) are
prescribed, see § 4.2.

Remark 1. The situation described above refers to an ideal geometry, where for
instance the radii of the two membranes and their time evolutions are equal. In practice,
however, owing to experimental imprecision the radii and their time-dependence may
differ slightly. Therefore, in order to compare the numerical simulations with the
experiments most accurately we prescribe functions Rs(t), Rm(t) with data taken from
the experiments, see also § 4.2.

3. Numerical method
Discretizing (2.6), the free boundary conditions (2.6d)–(2.6e) cause several problems,

in particular, the treatment of the curvature terms and in finding a stable and efficient
time discretization.

To resolve these problems we use a variational formulation, where the free-
boundary condition (2.6d) is transformed to a boundary integral part of the bilinear
forms. In the following, we sketch the basic ideas only; for further details see Bänsch
(2001).
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To proceed, we write the momentum part of the Stokes equations (analogously
for the Navier–Stokes equations) in the strong form, multiply by a solenoidal test
function ϕ vanishing on the no-slip parts Γs, Γm of the boundary and integrate by
parts. We obtain∫

Ω

{−Ca �v + ∇p} · ϕ = 2Ca

∫
Ω

D(v) :D(ϕ) −
∫

Ω

p∇ · ϕ −
∫

Γf

n · σ · ϕ,

where

D(v) :D(ϕ) :=
∑
i,j

D(v)i,jD(ϕ)i,j .

From the boundary condition (2.6d), we have

−
∫

Γf

n · σ · ϕ =

∫
Γf

κ n · ϕ,

while a basic identity from differential geometry gives∫
Γf

κ n · ϕ =

∫
Γf

∇x · ∇ϕ, (3.1)

where ∇ is the tangential gradient on Γf and x the position vector.
Summarizing, we have∫

Ω

{−Ca �v + ∇p} · ϕ = 2Ca

∫
Ω

D(v) : D(ϕ) −
∫

Ω

p∇ · ϕ +

∫
Γf

∇x · ∇ϕ. (3.2)

Since the problem is axisymmetric, the above boundary integral can be expressed
in parametric form as follows. Let Γf be given in parametric form by Γf := {r(s)er +
z(s)ez | s ∈ S} with some parameter domain S ⊆ IR. Then for vector fields f , h∫

Γf

∇ f · ∇h =

∫
S

{
Q(s)

r(s)
frhr +

r(s)

Q(s)
(∂sfr∂shr + ∂sfz∂shz)

}
ds

with Q(s) :=
√

∂sr(s)2 + ∂sz(s)2.
Although in our case a graph representation of the free surface Γf would be

convenient, the above parametric form allows more general free surfaces to be
considered.

Time discretization

To discretize in time a semi-implicit coupling of the unknowns for the geometry Ω

and the flow variables v, p is used. More precisely, given the values Ωk−1, vk−1, pk−1

at the discrete time instant tk−1, we compute
Step 1: vk , pk by solving (2.6a)–(2.6c) with boundary conditions (2.6d), (2.6f )–

(2.6g) in Ωk−1,
Step 2: Γ k

f by a discretized form of (2.6e): Γ k
f := Γ k−1

f + (tk − tk−1) vk ,

Step 3: Γ k
m by (2.5) and also the update of the domain by an extension of Γ k

into the interior, resulting in Ωk .
In Step 1, the boundary condition (2.6d) is incorporated via the variational

formulation according to (3.2). The curvature terms are treated in a semi-implicit
way using the identity xk = xk−1 + (tk − tk−1)v

k of Step 2 with xk−1, xk the position
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Figure 2. Typical (fine) triangular mesh with 1280 elements and 2737 velocity nodes.

vectors of Γ k−1
f , Γ k

f , respectively, i.e.∫
Γ k−1

f

∇xk · ∇ϕ =

∫
Γ k−1

f

∇xk−1 · ∇ϕ + (tk − tk−1)

∫
Γ k−1

f

∇vk · ∇ϕ,

which decouples the flow computation from the determination of the geometry. The
above algorithm leads to an unconditionally stable and efficient treatment of the free
boundary conditions, see Bänsch (2001).

For the extension of Γ k into the interior in Step 3, a smoothing of the triangulation
by a discrete Poisson equation is used.

The computation of vk, pk is based on the axisymmetric version (Tenhaeff 1997)
of the method and implementation described in Bänsch (1991, 1998). The underlying
code uses the fractional step θ-scheme with operator splitting as variant, which
decouples two major numerical difficulties, the solenoidal condition and the non-
linearity (see Bristeau, Glowinski & Periaux 1986). The axisymmetric code solves for
the unknowns (vs, vz) and p, where vs := vr/r . This scaling resolves the singularities of
the operators at r =0, and may be interpreted as a proper variational formulation of
the axisymmetric Navier–Stokes equation in appropriately r-weighted Sobolev spaces
(see also Lailly 1976).

Spatial discretization

To discretize in space the Taylor–Hood element, i.e. piecewise quadratic globally
continuous elements for v and piecewise linear globally continuous elements for p,
are used on triangular grids.

Some care must be taken in dealing with the rather large aspect ratios encountered
during stretching. To this end, we use meshes that are condensed in the z-direction
initially. Moreover, while moving the mesh from one time step to another, a smoothing
operator maintains mesh regularity, see above.

Code validation

The code was validated with examples for Newtonian fluids from Zhang, Padgett &
Basaran (1996) and Yao & McKinley (1998). Furthermore, the examples in § 5 were
computed using several different meshes and time-step sizes to ensure that the
discretization error was sufficiently small.

It may be noteworthy that, because of the higher spatial approximation order of
the Taylor–Hood element and the accurate approximation of the curvature terms,
only rather coarse meshes were needed. More precisely, it would have been sufficient
to compute on meshes with 320 elements and using a (non-dimensional) time step
δt = 0.005. To be on the safe side for the results presented in this paper, we used
finer meshes with 1280 elements and a time step δt = 0.0025. Figure 2 shows a typical
mesh with 1280 elements and 2737 velocity nodes.
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z00 z

Membrane Liquid   bridge

Figure 3. Membrane with time-dependent radius to adjust to the actual bridge length;
(a) apparatus and (b) sketch of the device. The accelerated end moves in the z-direction,
i.e. the direction where the device is dropped.

4. Experimental approach
4.1. Set-up and procedure

Extensional flows were experimentally achieved by stretching a large cylindrical
liquid bridge. The bridge had sufficiently large dimensions to enable measurement of
its extensional viscosity by the forces at the endplates, as done by Berg et al. (1994), or
to carry macroscopic particles such as fibres or emulsion droplets for orientation and
deformation experiments, performed by Berg (2002). The goal here was to generate
a maximum homogeneous flow field with constant extension rates in space and time
during stretching. For this reason, some technical effort was necessary to provide
optimal flow conditions.

The stretching of the liquid bridge was performed under microgravity at the drop
tower of Bremen. The microgravity environment during stretching was necessary to
eliminate forces created by the hydrostatic pressure, see also the comment on the
influence of non-vanishing gravitational forces at the end of § 5.3. The overall time
for an experimental run under microgravity was determined by the height of the drop
tower, resulting in 4.7 s for the Bremen experiments.

The liquid bridge was held between two almost circular concentric membranes,
which stretched the liquid by time-controlled acceleration. The core of the apparatus
comprised two membrane-reduction devices, each consisting of eight segments (see
figure 3) to adjust the membrane radius R(t) to the instantaneous length L(t) of the
liquid bridge according to (1.2), (1.3). To this end, the segments were connected to a
stepping motor by thin wires, see figure 3(b). The lower (on the right hand side in our
figures) device was fitted to a linear slider whereas the upper one had a fixed position.
Before the start of the experiment, these membranes (together with two supporting
PMMA cylinders) enclosed a volume of cylindrical shape. This volume was filled with
fluid under 1g conditions. A sealing compound was necessary to insulate the device
at the edge between the lower membrane and a cylindrical oil scraper.

The experiment was begun in the following way. After dropping the device (and
hence under microgravity conditions) the rings were pulled away. To minimize losses
and disturbances due to wetting of the supporting cylinders, those had been first
coated with FC724 from 3M. Furthermore, the oil scraper was used for dewetting the
opening supporting cylinders. Before starting the extension of the liquid bridge, the
system was relaxed for 1 s, allowing initial perturbations induced by the movements
of the rings to be sufficiently damped. The bridge extension was then started.
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µ (Pa s) γ (10−3 Nm−1) ρ (kgm−3) ε̇0 (s−1) Λ0 τ Ca We

Liquid 1 0.71 35.7 954 0.6 2 0.115 0.179 0.0325
Liquid 2 9.7 21.3 975 0.6 2 0.151 4.099 0.0556

Table 1. Characteristics of the fluids (at 25 ◦C): µ is the dynamical viscosity, γ the coefficient
of surface tension, ρ the density; geometrical quantities: ε̇0 is the stretching rate, Λ0 the initial
aspect ratio, τ the (dimensionless) relaxation time, see (4.1); dimensionless parameters: Ca, We
are the capillary and Weber numbers, respectively.

(a)

(b)

(c)

(d)

Figure 4. Initial and stretched bridge of castor oil liquid 1 at (a) t = 0, (b) t = 0.444,
(c) t = 0.888, (d) t =1.344, respectively; time in dimensionless units.

The initial size of the liquid bridge was 30 mm in length and 15 mm in radius.
Modification of the radius was possible down to a minimum of 5 mm for a fluid
length of 270 mm. The stretching rate was ε̇0 = 0.6 s−1 in our experiments.

Results from a typical experimental run, using castor oil (see table 1) in this
example, are presented in figure 4. Figure 4(a) shows the liquid bridge before the onset
of stretching, where the bridge is held between the membranes under microgravity
conditions. The bridge is almost cylindrical before stretching and two immiscible
emulsion droplets were placed inside the bridge to investigate their deformations in
extensional flow in this particular case.

In figures 4(b)–4(d), the device on the right-hand side stretches the bridge for
3.5 s with exponentially increasing velocity according to (1.2). Simultaneously, the
membranes decrease their radii exponentially so that the fluid boundaries adapt to
the actual bridge length.

During stretching, a small amount of necking close to the accelerated device can
be seen, which, as we will show in § 5, is typical and caused mainly by inertia forces
in this parameter range (Ca = 0.179, We = 0.0325).

4.2. Experimental conditions

In the microgravity environment, residual accelerations caused by experimental
disturbances occurred in the range 10−6 g − 10−2 g. According to the microgravity
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Figure 5. Liquid 1: bridge shape at time instants (a) t = 0, t = 0.144, t = 0.288, t =0.396
and (b) t = 0.444, t = 0.600, t = 0.744, t = 0.888, t =1.04, t = 1.34, from top to bottom,
respectively; time in non-dimensional units; experiment (solid) and simulation (dash–dotted).

experiments of Berg (2002), disturbances greater than 10−6 g are irregular and
damped out within less than 10−5 s. These short disturbances initiate waves from the
membranes into the liquid bridge. However, owing to viscous dissipation, the waves
are damped out within less than 0.1 mm and do not disturb the full bridge. Thus, only
residual accelerations at about 10−6 g load the bridge with small hydrostatic pressure
differences, characterized by Bond numbers Bo less than 10−4. These small hydrostatic
pressure differences were irrelevant in all experiments compared to capillary, viscous
or inertia effects and were therefore neglected in the simulations. Note also that
three-dimensional oscillations, which may disturb the bridges at small viscosity (see
Higuera, Nicolás & Vega 2002), are not present in our configuration. This is because
the bridge is held by supporting cylinders in the gravity phase, which inhibit such
disturbances and provide a strictly axisymmetric start configuration, see also § 4.1.

Two different liquids with medium and high viscosity, respectively, were used in the
experiments:

Liquid 1: castor oil, Lechner & Crebert GmbH, Mannheim, Germany,
Liquid 2: a highly viscous silicon oil, Dow Corning 200, Dow Chemical, USA;

see also table 1 for properties of both liquids.
Both liquids enable almost cylindrical contours with small deformations to be

maintained during stretching (see figure 4). The resulting differences in deformation
between the two liquids were mainly caused by the different capillary numbers for
liquid 1 and liquid 2.

For a precise comparison between experiment and numerical simulation, the real,
opposed to ideal, experimental boundary conditions were taken into account. Since the
liquid bridges were held exclusively by the membranes, the shape of the membranes
determined the liquid boundaries Γs, Γm. The areas of the membranes and a small
part at the sides of the membranes were wetted by the liquid without a sharp
edge. Moreover, remnants of the sealing compound that was used to insulate the
device (which had to be closed under 1g conditions before the experimental run),
were attached to the moving membrane resulting in an increased effective radius.
Therefore, the actual liquid radii Rs(t) of Γs and Rm(t) of Γm at the membrane
positions during stretching were measured and imposed as boundary conditions in
the numerical simulations instead of (2.4) and (2.5).

Moreover, the experimental procedure to provide the initial liquid bridges lead to
concave–convex shaped contours (figures 5 and 6). Also, small losses of liquid from



Uniaxial extensional flows in liquid bridges 363

0 1 2 3 4

0.7

0.8

0.9

1.0

z z

r

0 5 10 15 20

0.3

0.4

0.5

0.6

0.7(a) (b)

Figure 6. Liquid 2: bridge shape at time instants (a) t = 0, t = 0.144, t = 0.288, t = 0.576 and
(b) t = 0.888, t =1.200, t = 1.488, t = 1.800, t = 2.064, from top to bottom, respectively; time
in non-dimensional units; experiment (solid) and simulation (dash–dotted).

the initial bridges could not be totally avoided; in fact, the initial liquid bridges only
contained about 96% liquid volume of the ideal cylindrical bridge. The numerical
simulations were thus started with the corresponding initial shapes, which were
measured and then interpolated by a polynomial fit. The polynomial degree was
optimized to obtain the best representation of the curves, resulting in the polynomial
order 8 for liquid 1 and order 7 for liquid 2.

Furthermore, an initial rest state is incompatible with boundary conditions (2.6f ),
(2.6g), since this would give rise to a so called impulsive start, implying infinite
acceleration forces initially.

In order to avoid this, we defined a start-up phase by imposing v(0, ·) = 0 and
defining the time-dependent boundary condition

vz(t, ·) = Λ0

d

dt
exp(t(1 − exp(−t/τ ))) on Γm, (4.1)

which asymptotically approaches the ‘ideal’ function vz = Λ0 exp(t) on the time scale
τ . The (dimensionless) relaxation time τ was fitted to measurements from the experi-
ments (see Berg 2002) and the values for liquids 1 and 2 are given in table 1.

5. Results
5.1. Comparison of experimental and numerical results

As a first step in our investigation we compared the experimental results for liquid
1 and liquid 2 with corresponding numerical simulations. The experiments with
liquid 1 and liquid 2 were performed for 0 � t � 1.344 and 0 � t � 2.1, respectively
(non-dimensional units).

During the time evolution, the stretched bridges were recorded by a video camera
with wide angle lens, allowing for total views of the bridge to a maximum length of
115 mm (liquid 1) and 245 mm (liquid 2), see figures 8 and 9. Moreover, a second
camera provided a closer view of the accelerated bridges up to a time t = 0.444. The
contours of the bridge surface were reliably determined by digital image processing,
which identified the bridge shape by a strong gradient in the pixel brightness. Because
of the different image resolutions of the two cameras (small and wide angle lenses),
stronger pixel steps occur in the contour images for t > 0.444 (cf. figures 5 and 6).
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Figure 7. Minimum radius of the bridge versus time; experiment (diamonds), simulation
(solid) and exp(−0.5 t) (dashed–dotted); (a) liquid 1 and (b) liquid 2.
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Figure 8. Initial and stretched bridge of castor oil (liquid 1) at (a) t = 0 and (b) t = 1.344,
respectively; time in dimensionless units.

(a) (b)

Figure 9. Initial and stretched bridge of silicon fluid (liquid 2) at (a) t = 0 and (b) t = 1.344,
respectively; time in dimensionless units.

The transient bridge deformation during stretching can be subdivided into two
parts. In the first time period, the capillary pressure tries to stabilize the bridge
contour to a cylindrical shape of constant mean curvature. A first rough estimate of
this time interval is determined by the stability limit of a stationary liquid bridge,
i.e. the aspect ratio Λ(t) = L(t)/R(t) � 2π, which was studied by Plateau (1863) and
Rayleigh (1878).

During this period, the initial deformation reorientates and relaxes, delayed by
viscous forces. In the case of liquid 1, the deformation changes from a concave–
convex shape to a purely concave shape. Moreover, capillary forces stabilize the bridge
contour, counteracting the dynamic pressure difference caused by the acceleration of
the flow.

Beyond the stability limit, in the remaining stretching period, the capillary and
the dynamic pressures deform the bridge contour. A significant convex–concave
deformation owing to the accelerated moving membrane arises. This type of bridge
contour appears during stretching because of the negative pressure gradient in the
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vicinity of the accelerated membrane. The typical convex–concave shape is clearly
visible in figure 5. Eventually, instability leads to a breakup of the bridge.

These two deformation processes, first reorientation by capillary pressure and
then deformation by capillary and dynamic pressure differences, are clearly visible for
liquid 1. Both processes also occur for liquid 2. However, because of its higher viscosity,
the reorientation and convex–concave deformation are more delayed and the transi-
tion between the two phases is less pronounced.

The numerical simulations are capable of reliably describing the transient
deformation during the bridge stretching of liquids 1 and 2. Figures 5 and 6 show
that, in view of the real initial fluid volume and the measured membrane radii Rs(t)
and Rm(t), the numerical results are in fairly good agreement with the experimental
contours. More precisely, the experimental uncertainty of the recording device is 2
pixels and the agreement of the numerical results is of the same order of magnitude
over most parts of the bridge and at almost all times.

Since the bridge stretches with exponentially increasing velocity and the defor-
mations are also growing in time, differences between simulated and experimental
data are expected to increase with time. The small difference maintained between
numerical and experimental data at nearly all times is an indication of the quality of
the numerical method.

A parameter commonly used to characterize the bridge deformation is the minimum
radius of the deformed bridge versus time, shown for our examples in figure 7.
There, the radii values (experimental as well as numerical) are compared to the
ideal case of R(t) = exp(−0.5 t). The deviation from the given exponential form
characterizes the bridge deformation. Figure 7 confirms the reliability of the numerical
results, demonstrating the good agreement of the minimum radius prediction with
the experimental data.

From the sound numerical simulation of the transient bridge deformations in
figures 5, 6 and 7, we can deduce that the capillary, inertia and viscous forces during
reorientation and deformation are also accurately captured. In the next section, we
discuss various parameter ranges, where the forces acting in a stretched liquid bridge
and the corresponding bridge shapes are identified.

5.2. Parameter variations and bridge shapes

We used the numerical method described in § 3 to investigate bridge stretching and
the corresponding flow quality for a wide variety of capillary and Weber numbers
(shown in figure 10 with the cases numbered 1–30). The parameters were chosen to
represent the bridge stretching at realistic fluid properties and bridge dimensions.

The initial aspect ratio Λ0 was chosen to be 2 and the relaxation time τ , defined in
(4.1), was set to τ =0.012 for all examples.

Since no data or rationale for choosing realistic, perturbed boundary conditions
were available in the large parameter field, we imposed the ideal form (2.4), (2.5) and
(2.6f ), (2.6g) of the boundary conditions for the simulations.

Likewise, the initial bridge shape was chosen to be cylindrical (i.e. ideal). Robustness
of the results with respect to perturbation of the initially cylindrical shape are
discussed in § 5.4.

Physically, the parameter field can be interpreted in the following way: fixing the
initial bridge radius to R0 = 15 mm, the stretching rates are varied between 0.1 s−1 and
10 s−1. The surface tension and viscosity are varied in the ranges 20–70 mN m−1 and
0.001–1000 Pa s, respectively, while keeping the density constant at about 1000 kg m−3,
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Figure 10. Parameter field, numbering of the numerical experiments; the dash-dotted lines
mark the respective transition regions between capillary-dominated (CD), viscous-dominated
(VD) and inertia-dominated (ID) flows. Ringed examples 8, 13, 16 and 23 are discussed in
detail in the text.

Number Liquid µ (Pa s) γ (10−3 Nm−1) ρ (kg m−3) ε̇0 (s−1) tbreakup (s)

1 Water 0.001 72 998 10 0.05
13 85% Glycerol–water 0.1129 66 1123 0.09 12
18 Silicon liquid 10 21 975 10 0.23
30 Silicon liquid 1025 21 976 0.1 60

Table 2. Some physical liquids in the parameter field. The last column shows the
approximate lifespan tbreakup of the bridges obtained from the computations in § 5.2.

(cf. table 2, where some possible physical liquids are identified within the parameter
field).

Anticipating the result of our study, the parameter field can be subdivided into
three major regimes:

(i) capillary-dominated flow, characterized by Ca � 1, We � 1,
(ii) viscous-dominated flow, Ca > O(0.1), Re < O(0.1),
(iii) inertia-dominated flow, We > O(0.1), Re > O(0.1).
The field could be extended considerably to other bridge dimensions and strain

rates, but systematic changes of the flow quality and the deformation behaviour are
expected only at the transition between the capillary-, viscous- or inertia-dominated
flow regimes, respectively.

A first overview of the situation is given in figure 11, which presents the minimum
radii of the stretched bridges for various Weber and capillary numbers, as well as the
‘ideal’ exponential curve denoted ‘e’ for comparison. The figures clearly confirm the
transitions between the different flow regimes.

Figure 11 shows the transition from almost capillary-dominated flow states to flow
states determined by viscosity (figures 11a) or inertia (figures 11b).
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Figure 11. Minimum radii of the bridges versus time.

At low capillary and Weber numbers (numbers 13, 14, 19, 20, 23), the minimum
bridge radii coincide with the ideal exponential function up to the capillary stability
limit. Beyond this limit, capillary instability leads to distortion of the bridge and the
final breakup. The larger the capillary number and the smaller the Weber number,
the longer the lifetime of the bridge. For minimal values of the capillary and Weber
numbers (number 13), the bridge breaks up just after t = 1.0. For higher capillary
numbers, the breakup is delayed.

Completely different behaviour can be seen for the transition from low capillary
and Weber numbers (numbers 13, 14) to increased Weber numbers (numbers 1, 2,
5, 6). Whereas at small Weber numbers (numbers 13, 14) the minimum bridge radii
stay relatively close to the ideal exponential function during their whole life span,
the radius functions at higher Weber numbers (numbers 1, 2, 5, 6) deviate from
the exponential function from the start. The lifetime of a bridge decreases, and the
deviation to the ideal case increases with increasing Weber number. The extreme
examples (numbers 1, 2) are strongly deformed and short-lived bridges.

Remark 2. Some of the bridges are strongly deformed from the start, yielding rather
distorted meshes in the numerical simulations despite the mesh smoothing in Step 3 of
the algorithm, see § 2. This gives rise to a shorter ‘numerical’ rather than physical life
span of the corresponding bridges.

Figures 11(a) and 11(b) show the influence of decreasing Weber number and
increasing capillary number. It can be seen that for higher values of Re = We/Ca
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Figure 12. Bridge shapes for some representative examples. (a) Example 13 represents
capillary-dominated flow. (b) Example 8 represents inertia-dominated flow. (c) Example 16
represents the transition from capillary- to viscous-dominated flow. (d) Example 23 represents
the transition from inertia to viscous-dominated.

(numbers 3, 4, 7, 8, 11, 12, 16, 17, 18, 21) the minimum bridge radii are not at all
close to the ideal exponential function. The deviation from the ideal case increases
with increasing Reynolds number. On the other hand, at lower Reynolds numbers,
the minimum bridge radius is close to the ideal case and the breakup is more delayed.

Moreover, it is noteworthy that the curves of minimum bridge radii are nearly
identical for identical Reynolds numbers (numbers 11/12, 17/18, 21/22, 25/26, 29/30).
This shows that capillary forces do not have a strong influence on the deformation
behaviour at higher capillary or Weber numbers, Ca > 0.75 or We > 0.17, i.e. outside
the capillary-dominated regime.

In the rest of this section we discuss four representative examples, bridge numbers
13, 8, 16 and 23, from capillary to inertia and then viscous-dominated flow in more
detail. The respective contour shapes of these bridges for several time instants are
plotted in figure 12.

Bridge 13 at Ca = 2.14 × 10−3 and We = 4.82 × 10−4 represents capillary-dominated
flow. After the start and during the main part of the stretching period, represented by
the instants t =0.205, t = 0.53, respectively, a nearly ideal (cylindrical) shape exists.
After this, the capillary instability induces a convex–concave shape leading to the
final breakup of the bridge. The almost symmetric shape of the convex–concave
distribution is an indication of the predominantly capillary-driven instability, which
by linear stability analysis is predicted to take on a sinusoidal form.
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Bridge 8 at Ca = 7.50 × 10−1 and We =1.69 × 101 represents inertia-dominated flow.
As soon as the stretching begins, strong contour deformations develop close to the
accelerated side. These disturbances are caused by the inertia of the liquid and are
not significantly damped by viscous or capillary forces during stretching. The contour
deformation remains until the breakup of the bridge.

Bridge 16 at Ca = 7.50 × 10−1 and We = 1.69 × 10−1 represents the situation of
balanced viscous and capillary forces and smaller inertia forces. The bridge develops
only small deformations during stretching compared to, for instance, bridge 8. As
can be seen from figure 12 at t = 0.205, a tiny convex–concave deformation is visible,
which grows slowly during stretching. The deformation is caused by the dynamic
pressure difference and is compensated by the capillary pressure. The stronger viscous
forces in comparison to inertia forces prevent strong local deformations and flow
variations, as seen for instance in example number 8.

Bridge 23 at Ca = 2.14 × 10−1 and We =4.82 × 10−4 shows an example of viscous-
dominated flow. The higher viscous forces in comparison to example number 16
prevent strong local pressure variations inside the bridge and the bridge has a
cylindrical shape during the main part of the stretching period. Just before the
breakup a convex–concave deformation occurs.

5.3. Strain and shear

The evaluation of the strain and shear distribution inside the bridge provides a means
of assessing the quality of the uniaxial extensional flows. In cylindrical coordinates,
the strain rate ε̇ and the shear rate γ̇ are given by

ε̇ = 2
3
(∂zvz − ∂rvr ), γ̇ = ∂rvz + ∂zvr .

We are interested in the regions of Ω that are homogeneous with respect to the
strain rate and shear rate. To this end we define the homogeneous part Ωhom of Ω ,
where the deviation from the desired strain and shear rate distribution of the ideal
bridge is less than 5%:

Ωhom(t) := {x ∈ Ω(t) | max{|ε̇(t, x) − 1.0|, |γ̇ (t, x)|} < 0.05}, (5.1)

as well as the fraction of the homogeneous part

hom(t) : =
|Ωhom(t)|

|Ω(t)| . (5.2)

The latter expression is a direct measure of the quality of a stretched bridge. Figure 13
indicates the time-dependence of hom for the given examples considered. For the
sake of clarity some curves are omitted. The omitted curves are either close to
those corresponding to neighbours in the parameter field or their values of hom are
negligibly small for the whole stretching period (bridges 1, 2, 3, 4, 7, 8, 11, 12).

From figures 11 and 13 a clear correspondence can be seen between the flow
quality, characterized by hom, and the bridge deformation, expressed by the function
of minimum radius.

Comparison of the curves in figures 11(a) and 13(a) (examples 13, 20, 23, 27) shows
that, as long as the minimum radius follows the ideal exponential function, i.e. there
is no large deformation of the bridge, the flow inside the bridge enjoys a maximum
homogeneity hom, which in turn implies that the shear is minimum.

In the range of capillary-dominated flows (e.g. bridges 13, 20), the homogeneous
fraction vanishes just at the onset of the breakup of the bridge.
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Figure 13. Homogeneous fraction of the domain hom(t) : = |Ωhom(t)|/|Ω(t)| for the
examples in the parameter field.

For higher Weber numbers (numbers 5, 6, 9, 10), the bridge contours behave
similarly to example 16 in figure 12, exhibiting a convex–concave shape during
stretching. These asymmetrical deformations result in relatively small homogeneous
fractions compared to those for lower Weber numbers.

For viscous-dominated flows (22, 29, 30), the homogeneous fraction is maximal
and the shear rates are minimal. This is caused by the strong viscous transport
of momentum, which inhibits strong deformations and flow variations; hence the
deformations are small and the bridge follows the ideal exponential case. On the
other hand, for inertia-dominated flows (7, 8, 12, 18), the strong dynamic pressure
gradients cause strong deformations and flow variations, resulting in large shear rates.
The homogeneous fractions for these examples are extremely small. In the case of
experiments 7, 8, 12, the homogeneous flow fraction remains close to zero and is
therefore not displayed in figure 13.

To summarize, viscous- and inertia-dominated flows exhibit very strong differences
in the flow quality, expressed by the homogeneous fraction hom. Hence, the best regime
in terms of quality of the underlying extensional flow field is viscous-dominated flow
at small Reynolds numbers. We note, however, that in the case of small capillary
numbers, as well as small Reynolds numbers, where capillary forces dominate, the
extensional flow is remarkably homogeneous up to the point of capillary-driven
breakup.
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Figure 14. Contour plot of the quality measure qual, defined by (5.3).

It should also be mentioned (without showing the corresponding curves) that the
shear rate is related to hom, i.e. the shear rate is high when hom is small, and vice
versa.

In order to obtain an even more condensed measure for the bridge qualities, we
define the scalar quantity qual,

qual :=

∫ tbreakup

0

hom(t) dt. (5.3)

This demonstrates increasing flow quality at decreasing Weber numbers and
increasing capillary numbers, cf. figure 14. Large values of qual indicate the desirable
situation of a large homogeneous flow fraction during a long time period.

Interestingly, qual remains almost constant at constant Reynolds numbers in the
We–Ca parameter field. This behaviour is most clearly visible for higher capillary
number, where capillary forces are negligible. In this range, qual is a decreasing
function of the Reynolds number only.

Finally, we remark on the influence of possible inhomogeneities induced by gravity
and non-adjusted disk radii. Computationally, we found that even small gravitational
forces lead to very strong distortions of the bridges. Bond numbers as small as
Bo = 0.1 (for capillary-dominated bridges) to Bo = 10 (for viscous-dominated bridges)
already give rise to bridges having no significant homogeneous fraction. Note that for
typical bridge dimensions (ρ = 1000 kgm−3, γ = 30 × 10−3 Nm−1, R0 = 15 mm) the 1g

situation implies a Bond number of Bo = 75.
Furthermore, fixing the radii of the endplates also destroys the quality of the flow

fields for our Newtonian liquids. In this case, for all values of Ca and We in the
parameter field, the obtained bridges were of lower quality regarding homogeneity.

Thus, we conclude that both the microgravity environment as well as the
adjustments of the disk radii are crucial to produce high-quality flow fields.

5.4. Sensitivity with respect to initial perturbations

As seen in § 4.2, because of experimental difficulties, we cannot achieve ideal initial
and boundary conditions. Therefore, the sensitivity of the computational results of
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Figure 15. Bridge shapes for the representative examples (a) 13, (b) 8, (c) 16, (d) 23: contours
for ideal initial bridges (solid lines) and perturbed initial bridges (dashed lines) at different
time instants.

§ 5.2 is an important issue. If the results were too sensitive to perturbations, the above
parameter study would be useless in practice.

To form an idea of the sensitivity, we compared stretching of the representative
bridges 8, 13, 16, 23 with ideal and perturbed initial configurations.

To this end we performed simulations, where the initial configurations were taken
from the experimental data of liquid 1, see § 4.2 and figure 5. The results are given in
figure 15, showing the bridge shapes at various time instants and in figure 16 showing
hom(t).

Bridge 16 behaves even better in the perturbed situation. The instability for this
bridge develops as a strongly convex–concave shape, which is opposite to the concave–
convex shape of the initial perturbation.

In general, the qualities of the perturbed bridges are still sufficiently close to the
unperturbed ones, as to conclude that the results found in § 5.2 are stable with respect
to these perturbations.

5.5. Flow regimes and application

In this section, we discuss in more detail the strain and shear distributions for the
four examples, bridges 13, 8, 16 and 23, and give further details for applications.

I. Capillary-dominated flow, bridge 13. As seen above, even for small capillary
numbers and small Reynolds numbers, homogeneous flow can be realized during
almost the entire period of stretching. For instance, bridge 13 includes a homogeneous
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Figure 16. Homogeneous fraction hom(t) := |Ωhom(t)|/|Ω(t)| of the domain for the represen-
tative examples (a) 13, (b) 8, (c) 16, (d) 23. Simulations start with ideal initial bridges (solid
lines) and perturbed initial bridges (dashed lines), respectively.
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Figure 17. Bridge 13: strain rate distribution at (a) t = 0.08, (b) t = 0.58 and (c) t = 0.98;
difference between successive isolines is 0.2.

strain flow immediately after the start: figures 17 and 18 show the strain and shear
rate distribution inside this bridge at different time instants.

Just after the start (e.g. t = 0.08 in figure 17), viscous momentum transport from
the membranes into the bridge causes a weak strain variation and a weak shear flow
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Figure 18. Bridge 13: shear rate distribution at (a) t = 0.08, (b) t = 0.58 and (c) t = 0.98;
difference between successive isolines is 0.1.

fraction; these are damped down quickly by the capillary forces (which are strong
compared to inertia and viscous forces).

During the main part of the stretching period, represented by the instant t = 0.58
for example, an ideal extensional flow prevails, until capillary forces initiate strong
variations in strain and shear rates, (e.g. at t = 0.98), which then lead to the final
capillary-dominated breakup.

As long as the bridge maintains an ideal cylindrical shape, the extensional flow is
perfectly homogeneous inside the bridge. After this, the capillary instability induces
a deformed shape, see figure 12. In the concave part of the bridge the strain rate
increases, while in the convex part the strain rate decreases (see figures 17 and 18).

Eventually, at the end of the stretching period, strong variations in strain rate and
high values of the shear rate lead to a ‘quick-vanishing’ hom, see figure 13.

We conclude that homogeneous strain experiments in the range of small Reynolds
numbers and small capillary numbers are possible up to the capillary breakup stage.

II. Inertia-dominated flow at high Weber and capillary numbers, bridge 8. This
bridge represents a less suited regime for homogeneous extensional flow. Figures 19
and 20 show the strain and shear rate distribution inside the bridge at different time
instants.

As early as t = 0.05, strong flow variations have developed close to the accelerated
side. Since viscous (diffusive) momentum transport inside the bridge is weak, the
forces lead to a strong contour necking.

In the left-hand convex part of the bridge, the strain rate is well below the desired
strain rate of unity. This example shows that dominant inertia at high Weber and
capillary numbers precludes homogeneous strain flow.

III. Balanced viscous and capillary forces with small inertia forces, bridge 16.
Studying bridge 16, we see that these parameters provide more suitable conditions
for homogeneous extensional flow and is typical for bridges with a Reynolds number
of 0.225.

Figures 21 and 22 show the strain and shear rate distribution inside the bridge
at different time instants. The bridge develops only small flow variations during
stretching.

Despite the better flow quality in comparison to example 8, figure 13 confirms
that almost no homogeneous flow exists inside the bridge for the main part of the
stretching period. However, since the flow variations are weak in the convex part,
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Figure 19. Bridge 8: strain rate distribution at (a) t = 0.05 and (b) t = 0.455; difference
between successive isolines is 0.5.
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Figure 20. Bridge 8: shear rate distribution at (a) t = 0.05 and (b) t = 0.455; difference
between successive isolines is 1.0.
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Figure 21. Bridge 16: strain rate distribution at (a) t = 0.205, (b) t = 1.205 and
(c) t = 1.705; difference between successive isolines is 0.1.

a local shear-free strain flow exists for some time, which may be used for strain
experiments.

IV. Low Weber numbers, medium capillary numbers, bridge 23. As mentioned
above, the most suitable parameters for homogeneous extensional flow correspond to
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Figure 22. Bridge 16: shear rate distribution at (a) t = 0.205, (b) t = 1.205 and
(c) t = 1.705; difference between successive isolines is 0.1.
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Figure 23. Bridge 23: strain rate distribution at (a) t = 0.58, (b) t = 1.58 and (c) t = 2.205;
difference between successive isolines is 0.05.
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Figure 24. Bridge 23: shear rate distribution at (a) t = 0.58, (b) t = 1.58 and (c) t = 2.205;
difference between successive isolines is 0.01.

viscous flows with small capillary forces. Such parameters at high capillary numbers
and small Reynolds numbers are only realizable at very high fluid viscosity, which
may not be available in the experiments.

Therefore, a more practical example (bridge 23) at medium viscosity or, in non-
dimensional terms, medium capillary number is presented in figures 23 and 24.

The figures show the strain and shear rate distribution inside the bridge at different
time instants. The higher viscous forces in comparison to those in the previous example
prevent strong local pressure variations inside the bridge. Therefore, the bridge
remains cylindrical and the flow homogeneous during the main part of the stretching
period. Variations in the strain and shear rates appear just before the breakup.

The very weak flow variations demonstrate the excellent flow quality, which makes
a bridge at low Reynolds number and even medium capillary number suitable for
strain experiments.

Examples I–IV reveal that small inertia forces, in comparison to viscous and
capillary forces, are necessary for the realization of homogeneous uniaxial extensional
flow.

As outlined above, the parameter regime providing the most suitable conditions
for continuous homogeneous extensional flow under conditions of negligible gravity
is found to be for low Reynolds numbers and high capillary numbers. Unfortunately,
these parameters cause certain difficulties in practice. High capillary numbers and
small Reynolds numbers are only realizable at very small bridge dimensions and very



Uniaxial extensional flows in liquid bridges 377

high fluid viscosity. High viscosity causes severe difficulties in controlling the fluid,
which makes it unrealistic in this context. Therefore, extensional flow experiments
are mainly performed at medium or low capillary numbers, where the duration of
homogeneous flow is limited in space and time.

Moreover, in the range of small Reynolds numbers as well as small capillary
numbers, where inertia forces are smaller than viscous and capillary forces, the
experimental realization of homogeneous extensional flows is indeed restricted by
further difficulties. For instance the duration of the ideal homogeneous flow varies
from case to case, cf. figure 13. The examples reveal that for decreasing capillary
number, stronger capillary forces (compared to viscous forces) lead to a shorter
lifetime for the homogeneous flow. This is also confirmed by the plot for minimum
radii in figure 11, where the breakup time decreases with decreasing capillary number.

6. Conclusion
We have investigated the possibility of generating nearly homogeneous uniaxial

extensional flows with an almost-constant strain rate in a stretched liquid bridge
under microgravity conditions. The key ingredient of the method is the adjustment
of the disk diameters in maintaining ideal boundary conditions in a cylindrical liquid
bridge. This method gives rise to much weaker end-effects than the commonly used
method with unchangeable disks.

However, even under these optimal conditions, the liquid bridges are deformed by
forces arising from the fluid inertia and surface tension. The balances between inertia
and surface tension forces, expressed by the Weber number, and between viscous and
surface tension forces, expressed by the capillary number, determine the deformation
and flow behaviour.

Our investigations systematically present different deformations and flow qualities
depending on Ca, We and Re = We/Ca. Regions of capillary-dominated flow, Ca � 1,
We � 1, viscous-dominated flow, Ca > O(0.1), Re < O(0.1), and inertia-dominated flow,
We >O(0.1), Re > O(0.1) have been detected, which exhibit mutually different bridge
deformations during stretching.

In the range of capillary-dominated flow, ideal extensional flows exist during the
main part of the stretching period, until capillary forces initiate strong variations
in strain and shear rates to the final capillary-dominated breakup. As long as the
bridge maintains an (almost) ideal cylindrical shape, the extensional flow is (nearly)
perfectly homogeneous inside the bridge. In the range of small capillary numbers
and small Reynolds numbers, homogeneous strain experiments are possible up to
capillary breakup. However, weak viscous forces (compared to capillary ones) do not
essentially delay the capillary-dominated breakup. Therefore the period of ideal flow
is limited in this case.

In the range of inertia-dominated flow, strong flow variations and contour defor-
mations occur, which are caused by the fluid inertia and are not damped by viscous or
capillary forces during stretching. This is the most unsuitable regime for homogeneous
extensional flow.

The most suitable parameters for homogeneous extensional flow are in the range of
viscous-dominated flow. The high viscous forces in comparison to inertia and capillary
forces prevent strong local pressure variations inside the bridge. Therefore, the bridge
remains cylindrical and the flow homogeneous and constant during a long stretching
period. Moreover, in this range the flow quality is a decreasing function of the
Reynolds number only.
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In experiments, some parameters (high capillary numbers and small Reynolds
numbers) may not always be realizable, because of the fluid properties or bridge
geometry. In this case, we can make an estimate for the expected flow quality,
expressed by the quantity qual depending on the parameters Ca and We, see for
instance figure 14.
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Kröger, R., Berg, S., Delgado, A. & Rath, H. J. 1992 Stretching behaviour of large polymeric and
Newtonian liquid bridges in plateau simulations. J. Non-Newtonian Fluid Mech. 45, 385–400.

Lailly, P. 1976 Numerical solution of the axisymmetric Stokes equations by a nonconforming finite
element method. PhD thesis, Paris (in French).

McKinley, G. H. & Sridhar, T. 2002 Filament-stretching rheometry of complex fluids. Annu. Rev.
Fluid Mech. 34, 375–415.

McKinley, G. H. & Tripathi, A. 2000 How to extract the Newtonian viscosity from capillary
breakup measurements in a filament rheometer. J. Rheol. 44, 653–670.
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